Development and Testing of X-Ray Imaging-Enhanced Poly-L-Lactide Bone Screws
نویسندگان
چکیده
Nanosized iron oxide particles exhibit osteogenic and radiopaque properties. Thus, iron oxide (Fe3O4) nanoparticles were incorporated into a biodegradable polymer (poly-L-lactic acid, PLLA) to fabricate a composite bone screw. This multifunctional, 3D printable bone screw was detectable on X-ray examination. In this study, mechanical tests including three-point bending and ultimate tensile strength were conducted to evaluate the optimal ratio of iron oxide nanoparticles in the PLLA composite. Both injection molding and 3D printing techniques were used to fabricate the PLLA bone screws with and without the iron oxide nanoparticles. The fabricated screws were implanted into the femoral condyles of New Zealand White rabbits. Bone blocks containing the PLLA screws were resected 2 and 4 weeks after surgery. Histologic examination of the surrounding bone and the radiopacity of the iron-oxide-containing PLLA screws were evaluated. Our results indicated that addition of iron oxide nanoparticles at 30% significantly decreased the ultimate tensile stress properties of the PLLA screws. The screws with 20% iron oxide exhibited strong radiopacity compared to the screws fabricated without the iron oxide nanoparticles. Four weeks after surgery, the average bone volume of the iron oxide PLLA composite screws was significantly greater than that of PLLA screws without iron oxide. These findings suggested that biodegradable and X-ray detectable PLLA bone screws can be produced by incorporation of 20% iron oxide nanoparticles. Furthermore, these screws had significantly greater osteogenic capability than the PLLA screws without iron oxide.
منابع مشابه
Self-reinforced bioabsorbable versus metallic fixation systems for metacarpal and phalangeal fractures: a biomechanical study.
Bioabsorbable fixation devices offer a useful option to treat small bone fractures of the hand if the prerequisite of reliable and stable osteofixation is met. We compared the stabilities of various bioabsorbable fixation devices with metallic fixation devices by using an oblique osteotomy model in radial to ulnar orientation. The 1.5-mm, self-reinforced, poly-L-lactide (SR-PLLA) pins provided ...
متن کاملIn Vitro Biocompatibility, Radiopacity, and Physical Property Tests of Nano-Fe3O4 Incorporated Poly-l-lactide Bone Screws
The aim of this study was to fabricate biodegradable poly-L-lactic acid (PLLA) bone screws containing iron oxide (Fe3O4) nanoparticles, which are radiopaque and 3D-printable. The PLLA composites were fabricated by loading 20%, 30%, and 40% Fe3O4 nanoparticles into the PLLA. The physical properties, including elastic modulus, thermal properties, and biocompatibility of the composites were tested...
متن کاملTreatment of Lateral Tibial Condylar Fractures Using Bioactive, Bioresorbable Forged Composites of Raw Particulate Unsintered Hydroxyapatite/Poly-L-Lactide Screws.
Forged composites of raw particulate unsintered hydroxyapatite/poly-L-lactide (F-u-HA/PLLA) devices possess high mechanical strength, bioactivity, and radio-opacity. The aim of this study was to assess the efficacy of F-u-HA/PLLA screws in the treatment of lateral tibial condylar fractures. From January 2005 to December 2010, a total of 7 patients with displaced closed lateral tibial condylar f...
متن کاملEffect of pleurotus sajor-caju polysaccharide encapsulated in poly D, L lactide-co-glycolide nanoparticles for HPV vaccine in murine model
Objective(s): In the current work, poly D, L lactide-co-glycolide (PLGA) particles were applied for a viral vaccine for the delivery of antigens in cytosolic pathway by increasing the antigen presentation to T-lymphocytes. HPV-E7 protein with PLGA particles has been reported as a potent adjuvant for HPV vaccine by encapsulating protein into the PLGA particles. Polysaccharide from Pleurotus sajo...
متن کاملCa-P Formation on Poly-L-lactide/β-Tricalcium Phosphate Composite Scaffold in Simulated Body Fluid
Poly-L-lactide/β-tricalcium phosphate (PLLA/β-TCP) porous scaffold fabricated by freeze shrinking/particulate leaching was studied. The scaffold was immersed into simulated body fluid (SBF) for 1, 2, 3 and 4 weeks and analyzed by the SEM, XRD and FT-IR spectroscopy. The ability of inducing Ca-P formation was compared among the scaffolds with different content of βTCP. SEM shows a typical featur...
متن کامل